## Scienze Biomediche e della Prevenzione Sanitaria FISICA – Lezione 6

Roberto Guerra roberto.guerra@unimi.it

Dipartimento di Fisica Università degli studi di Milano

# Part III

Lavoro ed energia (conclusione)

## Energia di un sistema di corpi

Il principio di conservazione vale in forma più generale, anche se in un sistema ci sono più corpi in interazione.

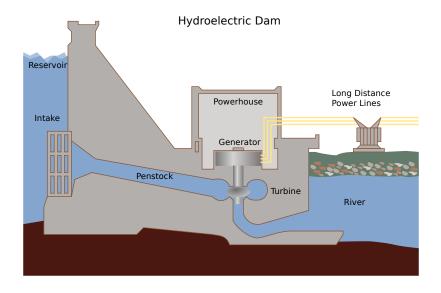
Nel caso di N corpi in interazione, è l'energia totale  $E_{tot}$  del sistema a conservarsi:

$$E_{\text{tot}} = \sum_{i=1}^{N} E_i = E_1 + E_2 + \cdots + E_N.$$

Il teorema di conservazione dice che l'energia totale di un corpo si conserva. Questo vuol dire che durante il moto l'energia può convertirsi in un tipo o in un altro, ma non può sparire.

La tecnologia può usare questo meccanismo a suo vantaggio, convertendo l'energia nella forma più utile per un certo scopo.

L'energia si può accumulare facilmente se è in forma di energia elettrica o chimica.


Ma come si converte l'energia in forma elettrica?



Le dinamo possono convertire energia cinetica (rotazione) in energia elettrica.



Diga di Itaipu: produce il 93 % dell'energia elettrica usata in Paraguay e il 20 % di quella usata in Bolivia.





## Conservazione dell'energia - Forze non conservative

Nel caso in cui entrino in gioco forze non conservative, l'energia totale non si conserva.

In tal caso è possibile dimostrare che la variazione dell'energia è uguale al lavoro fatto dalle forze non conservative:

$$L_{nc} = E_f - E_i$$
.

(Pensate alla forza di attrito: i segni corrispondono a quello che vi aspettereste?)

Un blocco con m=1 kg e  $v_i=3$  m/s slitta su un piano con  $\mu_d=0.1$  e comprime una molla con k=100 N/m fino a fermarsi. Sapendo che in totale percorre una distanza d=4 m, calcolare la compressione della molla.

Un blocco con m=1 kg e  $v_i=3$  m/s slitta su un piano con  $\mu_d=0.1$  e comprime una molla con k=100 N/m fino a fermarsi. Sapendo che in totale percorre una distanza d=4 m, calcolare la compressione della molla.

$$L_{\rm nc} = E_f - E_i$$

$$-\mu \, m \, g \, d = \frac{1}{2} \, k \, \Delta x^2 - \frac{1}{2} \, m \, v_i^2$$

Un blocco con m=1 kg e  $v_i=3$  m/s slitta su un piano con  $\mu_d=0.1$  e comprime una molla con k=100 N/m fino a fermarsi. Sapendo che in totale percorre una distanza d=4 m, calcolare la compressione della molla.

$$L_{\rm nc} = E_f - E_i$$

$$-\mu \, m \, g \, d = \frac{1}{2} \, k \, \Delta x^2 - \frac{1}{2} \, m \, v_i^2$$

$$\rightarrow \Delta x = \sqrt{(m v_i^2 - 2 \mu m g d)/k} = \sqrt{0.01} m = 0.1 m$$

#### Potenza

La potenza *P* è definita come il lavoro compiuto nell'unità di tempo:

$$P=\frac{L}{\Delta t}.$$

Misura quanto velocemente una forza è in grado di compiere lavoro (intuitivamente è una specie di misura dell'efficienza con cui le forze riescono a spostare i corpi).

#### Potenza



L'unità di misura della potenza è il Watt (W):

$$1 \, \mathrm{W} = 1 \, \mathrm{J/s}$$
.

In Italia il Watt si usa per definire un'unità di misura dell'energia alternativa al Joule, il kilowattora (kWh):

$$1\,{\rm kWh} = 10^3\,{\rm W} \times 3600\,{\rm s} = 3.6 \times 10^6\,{\rm J}.$$

L'energia elettrica per uso domestico ha un costo di circa 0.5÷0.8 €/kwh.

Quanto costa usare per un'ora un aspirapolvere da 1500 W, se la tariffa del fornitore di energia elettrica è 0.6 €/kwh?

Assegnamo a ogni quantità un simbolo:

$$t = 1 \,\mathrm{h},$$
 $P = 1500 \,\mathrm{W},$ 
 $c = 0.6 \,equal / \mathrm{kWh},$ 
 $S = ?$ 

Usando la definizione di potenza, l'energia consumata E è

$$E = P \times t$$
,

e quindi il costo totale è

$$S = E \times c = P \times t \times c$$
.

Per verificare se il risultato è corretto, controlliamo le unità di misura:

$$[S] = [P \times t \times c] = J/s \times s \times \neq/J = \neq.$$

Per calcolare il risultato numerico, dobbiamo convertire le unità non espresse nel S.I. (Sistema Internazionale):

$$c = 0.2$$
 €/kWh = 0.6 €/kWh ×  $\frac{1 \text{ kWh}}{3.6 \times 10^6 \text{ J}} =$   
=  $\frac{60 \times 10^{-2}}{3.6 \times 10^6}$  €/J ≈ 1.7 × 10<sup>-7</sup> €/J.

Ora possiamo calcolare il costo necessario a far funzionare l'aspirapolvere:

$$S = P \times t \times c =$$
= 1500 J/s × 3600 s × 1.7 × 10<sup>-7</sup> €/J =
= 1.5 × 10<sup>3</sup> J/s × 3.6 × 10<sup>3</sup> s × 1.7 × 10<sup>-7</sup> €/J =
= 0.9 €.

Nota: la conversione era utile per esercizio ma non necessaria:  $1.5 \, \mathrm{kW} \times 1 \, \mathrm{h} \times 0.6 \, \text{€/kWh} = 0.9 \, \text{€}$ 

#### Esercizi

- Un corpo di 5 kg viene sollevato con velocità costante v = 1 m/s per un tratto di Δh = 10 m da una forza F. Qual è il lavoro compiuto dalla forza F? Qual è il lavoro compiuto dalla forza gravitazionale? Qual è la potenza generata da F?
  [R: 500 J, -500 J, 50 W,]
- ▶ Un blocco di 5 kg viene lanciato lungo una superficie priva di attrito, in fondo alla quale c'è uno scivolo (privo di attrito) dell'altezza totale di 0.8 m. Qual è la minima velocità con cui deve essere lanciato il corpo perché riesca a raggiungere la sommità dello scivolo?
  - [R: 4 m/s; il risultato non dipende dalla massa]

#### Esercizi

- ▶ Un blocco di 2 kg è spinto contro una molla con  $k=500\,\mathrm{N/m}$ , accorciandola di 20 cm. La molla lo spinge lungo una superficie orizzontale priva di attrito lunga 1 m, e poi su un piano inclinato di 45°, sempre senza attrito. A che altezza sale il blocco? [R: 0.5 m]
- In un'ora, una lampadina da 50 W quanti Joule consuma? Se pagate l'energia 0.6 €/kwh, quanto vi è costata quest'ora di luce? [R: 1.8 × 10<sup>5</sup> J; 3 centesimi]

#### Esercizi

▶ Se il motore di un automobile ( $m=10^3$  kg) sviluppa una potenza di 10 kW, quanto tempo impiega ad accelerare da 0 a 100 km/h se l'attrito stradale ha un coefficiente  $\mu_d=0.01$ ? [ $t\simeq45\,\mathrm{s}$ ]